Search results for " functional analysis"

showing 10 items of 184 documents

Two-dimensional Banach spaces with polynomial numerical index zero

2009

We study two-dimensional Banach spaces with polynomial numerical indices equal to zero.

/dk/atira/pure/subjectarea/asjc/2600/2608/dk/atira/pure/subjectarea/asjc/2600/2607Eberlein–Šmulian theoremBanach manifoldFinite-rank operatorPolynomialMatrix polynomialFOS: MathematicsDiscrete Mathematics and Combinatorics/dk/atira/pure/subjectarea/asjc/2600/2602C0-semigroupLp spaceMathematicsMathematics::Functional AnalysisNumerical AnalysisBanach spaceAlgebra and Number TheoryMathematical analysisFunctional Analysis (math.FA)Mathematics - Functional Analysis46B04 (Primary) 46B20 46G25 47A12 (Secondary)Polynomial numerical indexInterpolation space/dk/atira/pure/subjectarea/asjc/2600/2612Geometry and TopologyNumerical rangeMonic polynomialLinear Algebra and its Applications
researchProduct

Vertical versus horizontal Sobolev spaces

2020

Let $\alpha \geq 0$, $1 < p < \infty$, and let $\mathbb{H}^{n}$ be the Heisenberg group. Folland in 1975 showed that if $f \colon \mathbb{H}^{n} \to \mathbb{R}$ is a function in the horizontal Sobolev space $S^{p}_{2\alpha}(\mathbb{H}^{n})$, then $\varphi f$ belongs to the Euclidean Sobolev space $S^{p}_{\alpha}(\mathbb{R}^{2n + 1})$ for any test function $\varphi$. In short, $S^{p}_{2\alpha}(\mathbb{H}^{n}) \subset S^{p}_{\alpha,\mathrm{loc}}(\mathbb{R}^{2n + 1})$. We show that the localisation can be omitted if one only cares for Sobolev regularity in the vertical direction: the horizontal Sobolev space $S_{2\alpha}^{p}(\mathbb{H}^{n})$ is continuously contained in the vertical Sobolev sp…

010102 general mathematicsMetric Geometry (math.MG)Function (mathematics)Lipschitz continuity01 natural sciencesFunctional Analysis (math.FA)Fractional calculusSobolev spaceCombinatoricsMathematics - Functional AnalysisMathematics - Metric GeometryMathematics - Classical Analysis and ODEsBounded function0103 physical sciencesVertical directionClassical Analysis and ODEs (math.CA)FOS: MathematicsHeisenberg groupOrder (group theory)010307 mathematical physics0101 mathematics46E35 (Primary) 26A33 35R03 43A15 (Secondary)AnalysisMathematics
researchProduct

Space-filling vs. Luzin's condition (N)

2013

Let us assume that we are given two metric spaces, where the Hausdorff dimension of the first space is strictly smaller than the one of the second space. Suppose further that the first space has sigma-finite measure with respect to the Hausdorff measure of the corresponding dimension. We show for quite general metric spaces that for any measurable surjection from the first onto the second space, there is a set of measure zero that is mapped to a set of positive measure (both measures are the Hausdorff measures corresponding to the Hausdorff dimension of the first space). We also study more general situations where the measures on the two metric spaces are not necessarily the same and not ne…

28A75 (Primary) 54C10 26B35 28A12 28A20 (Secondary)General Mathematicsta111Hausdorff spaceMathematics::General TopologySpace (mathematics)Functional Analysis (math.FA)Mathematics - Functional AnalysisSurjective functionCombinatoricsSet (abstract data type)Metric spaceMathematics - Classical Analysis and ODEsHausdorff dimensionClassical Analysis and ODEs (math.CA)FOS: MathematicsMathematicsAnnales Academiae Scientiarum Fennicae Mathematica
researchProduct

Frame-related Sequences in Chains and Scales of Hilbert Spaces

2022

Frames for Hilbert spaces are interesting for mathematicians but also important for applications in, e.g., signal analysis and physics. In both mathematics and physics, it is natural to consider a full scale of spaces, and not only a single one. In this paper, we study how certain frame-related properties of a certain sequence in one of the spaces, such as completeness or the property of being a (semi-) frame, propagate to the other ones in a scale of Hilbert spaces. We link that to the properties of the respective frame-related operators, such as analysis or synthesis. We start with a detailed survey of the theory of Hilbert chains. Using a canonical isomorphism, the properties of frame se…

42C15 46C99 47A70Algebra and Number TheoryHilbert chainsLogicFunctional Analysis (math.FA)Mathematics - Functional AnalysisSettore MAT/05 - Analisi Matematicaframes; scales of Hilbert spaces; Hilbert chains; Bessel sequences; semi-framesframesFOS: Mathematicsscales of Hilbert spacessemi-framesGeometry and TopologyBessel sequencesMathematical PhysicsAnalysis
researchProduct

Frames and weak frames for unbounded operators

2020

In 2012 G\u{a}vru\c{t}a introduced the notions of $K$-frame and of atomic system for a linear bounded operator $K$ in a Hilbert space $\mathcal{H}$, in order to decompose its range $\mathcal{R}(K)$ with a frame-like expansion. In this article we revisit these concepts for an unbounded and densely defined operator $A:\mathcal{D}(A)\to\mathcal{H}$ in two different ways. In one case we consider a non-Bessel sequence where the coefficient sequence depends continuously on $f\in\mathcal{D}(A)$ with respect to the norm of $\mathcal{H}$. In the other case we consider a Bessel sequence and the coefficient sequence depends continuously on $f\in\mathcal{D}(A)$ with respect to the graph norm of $A$.

42C15 47A05 47A63 41A65Atomic systemDensely defined operatorAtomic system010103 numerical & computational mathematics01 natural sciencesBounded operatorCombinatoricssymbols.namesakeReconstruction formulaSettore MAT/05 - Analisi MatematicaFOS: MathematicsComputational Science and EngineeringUnbounded operatorA-frame0101 mathematicsMathematicsApplied MathematicsHilbert spaceGraphFunctional Analysis (math.FA)Mathematics - Functional Analysis010101 applied mathematicsComputational MathematicssymbolsWeak A-framesBessel functionAdvances in Computational Mathematics
researchProduct

Hilbert space operators with two-isometric dilations

2021

A bounded linear Hilbert space operator $S$ is said to be a $2$-isometry if the operator $S$ and its adjoint $S^*$ satisfy the relation $S^{*2}S^{2} - 2 S^{*}S + I = 0$. In this paper, we study Hilbert space operators having liftings or dilations to $2$-isometries. The adjoint of an operator which admits such liftings is characterized as the restriction of a backward shift on a Hilbert space of vector-valued analytic functions. These results are applied to concave operators (i.e., operators $S$ such that $S^{*2}S^{2} - 2 S^{*}S + I \le 0$) and to operators similar to contractions or isometries. Two types of liftings to $2$-isometries, as well as the extensions induced by them, are construct…

47[MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA]A-contractionFunctional Analysis (math.FA)Mathematics - Functional AnalysisMathematics - Spectral Theory47A63Dirichlet shift MSC (2010): 47A0547A20FOS: Mathematicsdilationsconcave operator2-isometric lifting47A15Spectral Theory (math.SP)
researchProduct

Group topologies coarser than the Isbell topology

2011

Abstract The Isbell, compact-open and point-open topologies on the set C ( X , R ) of continuous real-valued maps can be represented as the dual topologies with respect to some collections α ( X ) of compact families of open subsets of a topological space X . Those α ( X ) for which addition is jointly continuous at the zero function in C α ( X , R ) are characterized, and sufficient conditions for translations to be continuous are found. As a result, collections α ( X ) for which C α ( X , R ) is a topological vector space are defined canonically. The Isbell topology coincides with this vector space topology if and only if X is infraconsonant. Examples based on measure theoretic methods, t…

54C35 54C40 54A10Function spaceGroup (mathematics)HyperspaceGeneral Topology (math.GN)Isbell topologyInfraconsonanceTopological spaceFunction spaceTopologyTopological vector spaceTopological groupFunctional Analysis (math.FA)Mathematics - Functional AnalysisHyperspaceFOS: MathematicsTopological groupGeometry and TopologyConsonanceTopology (chemistry)Vector spaceMathematicsMathematics - General Topology
researchProduct

Non-autonomous rough semilinear PDEs and the multiplicative Sewing Lemma

2021

We investigate existence, uniqueness and regularity for local solutions of rough parabolic equations with subcritical noise of the form $du_t- L_tu_tdt= N(u_t)dt + \sum_{i = 1}^dF_i(u_t)d\mathbf X^i_t$ where $(L_t)_{t\in[0,T]}$ is a time-dependent family of unbounded operators acting on some scale of Banach spaces, while $\mathbf X\equiv(X,\mathbb X)$ is a two-step (non-necessarily geometric) rough path of H\"older regularity $\gamma >1/3.$ Besides dealing with non-autonomous evolution equations, our results also allow for unbounded operations in the noise term (up to some critical loss of regularity depending on that of the rough path $\mathbf X$). As a technical tool, we introduce a versi…

60H15 60H05 35K58 32A70Pure mathematicsLemma (mathematics)Rough pathSemigroupMultiplicative functionProbability (math.PR)Banach spacePropagatorParabolic partial differential equationFunctional Analysis (math.FA)Mathematics - Functional AnalysisMathematics - Analysis of PDEsRough partial differential equationsProduct (mathematics)Multiplicative Sewing lemmaFOS: Mathematics/dk/atira/pure/subjectarea/asjc/2600/2603UniquenessRough pathMathematics - ProbabilityAnalysisMathematicsAnalysis of PDEs (math.AP)
researchProduct

A note on multiple summing operators and applications

2018

We prove a new result on multiple summing operators and, among other results and applications, we provide a new extension of Littlewood’s 4 / 3 inequality to m-linear forms.

AlgebraMathematics - Functional AnalysisAlgebra and Number TheoryInequalitymedia_common.quotation_subjectFOS: Mathematics010103 numerical & computational mathematicsExtension (predicate logic)0101 mathematics01 natural sciencesMathematicsmedia_commonFunctional Analysis (math.FA)
researchProduct

Product of extension domains is still an extension domain

2018

We prove the product of the Sobolev-extension domains is still a Sobolev-extension domain.

AlgebraMathematics - Functional AnalysisMathematics::Functional AnalysisGeneral MathematicsProduct (mathematics)FOS: MathematicsMathematics::Analysis of PDEsExtension (predicate logic)MathematicsDomain (software engineering)Functional Analysis (math.FA)
researchProduct